

Task 54 Webinar

Price Reduction of Solar Thermal Systems

IEA SHC is a project focused international research programme

Map is without prejudice to status of or sovereignty over any territory, to delimitation of international frontiers/boundaries and to name of any territory/area.

Sharing what we've learned

Why an academy?

To share our work <u>and</u> support R&D and implementation of solar heating and cooling projects worldwide.

How can you participate?

- Webinars held quarterly hosted by ISES
- Videos highlighting our work and other ST issues
 - Interviews with 12 presenters at SHC 2017
 - Videos showcasing 11 presentations from Qatar's Green Expo 2016
- National Days are country specific events held in conjunction with IEA SHC meetings for the exchange of information between national experts and IEA SHC experts.
- **Onsite Training** provided by IEA SHC experts at the request of IEA SHC member countries.

Where you can find more information

- Visit our website www.iea-shc.org
- Follow us on social media

@IEASHC

in.

IEA Solar Heating and Cooling Programme (group 4230381)

TASK 54 Webinar Price Reduction of Solar Thermal

Systems

- 1. Solar thermal value chain and cost reduction potential
- 2. LCoH calculation method
- **3. Practical examples:**
 - Cost reduction by standardization
 - Reduction of production costs Potential of process cost optimization
 - Cost reduction by temperature limitation
 - Cost reduction potential of polymeric materials
 - Cost competitiveness of multi-family-house systems
- 4. Wrap-up
- 5. Q&A

Solar Thermal Value Chain and Cost Reduction Potential

Dr. Stephan Fischer

TZS / ITW University of Stuttgart fischer@itw.uni-stuttgart.de

Price reduction of solar thermal systems

Solar Thermal Value Chain

Solar Thermal Value Chain Production

Energy, Machinery, Labor, Operation Costs, Profit

Solar Thermal Value Chain Distribution – Installation – Operation and Maintenance

Potentials

Materials

- use of different materials, system designs
- Production costs
 - process cost analysis, standardisation, economy of scales
- Installation
 - process cost analysis, reduction of stagnation temperature, standardisation
- Operation
 - standardisation
- Maintenance
 - reduction of stagnation temperature, standardisation
- Service life time
 - reduction of stagnation temperature, standardisation

Thank you for your attention!

Research and Testing Centre for Thermal Solar Systems (TZS) / Institute of Thermodynamics and Thermal Engineering (ITW) / University of Stuttgart Stephan Fischer

www.itw.uni-Stuttgart.de fischer@itw.uni-stuttgart.de

LCoH Calculation Method

Heat Cost Calculations Applied to Solar Thermal Systems

Yoann Louvet

ITE

University of Kassel yoann.louvet@uni-kassel.de

Price reduction of solar thermal systems

Introduction

Price reduction assessment in Task 54 requires:

- Reference systems
- Common indicator and methodology
- Levelized Cost of Heat (LCoH):
 - Often used in power sector (LCoE)
 - Growing usage in the heat sector
 - Assess the impact on heat costs of
 - costs reduction along the value chain (production to decommissioning)
 - system performance improvements

SOLAR.

14

System Boundaries and LCoH

15

Example: Reference SDHW System in Germany (SFH)

■ <u>5 m² FPC (gross)</u>, 300 I store, back-up: gas condensing boiler

Saved final energy: 2.2 MWh/a

- Final energy demand: 13.4 MWh/a
 - T = 20 years

	Conventional		al	Solar	
Investment I ₀ [€]		6500		3850	
O&M <i>C</i> _t [€/a]		1280		117	

$$LCoH = \frac{I_0 + \sum_{t=1}^T C_t}{\sum_{t=1}^T E_t}$$

LCoHs	13.9 €ct/kWh			

Summary

- LCoH is a sensitive indicator: detailed assumptions necessary!
- Depends for solar thermal systems on
 - System design
 - Customer behaviour
 - Climatic situation
 - Service life time and maintenance
- 10 **reference systems** (5 countries) defined in Task 54

Yoann Louvet

University of Kassel - Institute of Thermal Engineering

www.solar.uni-kassel.de

yoann.louvet@uni-kassel.de

Thank you for your attention!

Cost Reduction by Standardization

Dr. Stephan Fischer

TZS / ITW University of Stuttgart fischer@itw.uni-stuttgart.de

Price reduction of solar thermal systems

Standards in Everyday Life

Standardisation can make life easier and cheaper

Standards for Solar Thermal?!

different sizes/dimensions even if gross area is the same

- different connections
- different location for temperature sensor
- different interface to mounting system
- etc.

Collector

Mounting system

- different roof hooks
- different mounting rails
- different clamps
- etc.

Standards for Solar Thermal?!

Hot water storage

- different dimensions even if volume is the same
- different connections
- different location for temperature sensor
- etc.

Other componets

same situation

Standardisation for solar thermal needed!

Benefits of standards for solar thermal

- Cheaper semi finished parts, subcomponents and components
 reduction of investments costs
- Cheaper and error free installation
 reduction of investments costs
 reduction of maintenance costs
 extension of life time of the system
- Better performing systems
 increase of saved final energy

Standardisation Impact on the Solar Thermal Value Chain

	value	reduction	new value
Investment components $I_{0,c}$ [€]	2600	- 10 %	2340
Investment installation $I_{0,i}$ [€]	1250	- 20 %	1000
O&M <i>C</i> _t [€/a]	117	- 26 %	87
Saved final energy <i>E</i> _t [kWh/a]	2226	+ 10 %	2449
service time t [a]	20	+ 10 %	22

change of parameter in %

change of parameter in %

Cost Reduction by Standardization Summary

> Standardisation required for solar thermal

- Standardisation leads to easier to install, more reliable and more efficient solar thermal systems
- Cost for kWh produced by solar in a standard SDHW system can be reduced by standardisation from 13.9 to 9.8 € ct
 - \rightarrow cost reduction of 30 %
 - → costs now up to 13 % lower compared to conventional DHW system (11.4 €ct)

Thank you for your attention!

Research and Testing Centre for Thermal Solar Systems (TZS) / Institute of Thermodynamics and Thermal Engineering (ITW) / University of Stuttgart Stephan Fischer

www.itw.uni-Stuttgart.de fischer@itw.uni-stuttgart.de

Reduction of Costs

Application of Methods for Process Cost Analysis in the Heating Industry

Axel Oliva

Fraunhofer ISE axel.oliva@ise.fraunhofer.de

Price reduction of solar thermal systems

Targets of the Project TEWIsol

- Common activity of industry, craft and research targeting cost reduction in solar thermal installations
- Actors:
 - Manufacturers of solar thermal systems
 - Component suppliers
 - Installers
 - Research institutes
- Approach: combined economic technical method development for cost reduction considering the complete value chain starting from development to installation

Content of the Project Methods of Cost Optimization

- 1. Complexity analysis
 - Determination of needed diversity with regard to the market expectations (external complexity)
 - Complexity of the existing product structure (internal complexity)
 - Reduction of complexity and management of diversity
- 2. Process chain analysis
 - Identification of indirect cost drivers
 - Quantification of cost effects based on product complexity
 - Cost reduction in the processes (indirect cost)
- 3. Value analysis
 - ABC-analysis concerning production cost
 - Cost of function analysis
 - Cost reduction of the product (direct cost)

Content of the Project Methods of Performance Optimization

- 1. Identification of solar yield of system
 - Measurements of components conforming to standards.
 - Identification of solar yield of the system
 - Benchmarking of systems
- 2. Simulation based analysis of systems
 - System simulation of combi-systems
 - Modelling of innovative components and systems
 - Performance optimized product and system design

Cost Analysis Approach of Over-Head Cost vs. Process Cost Analysis

Integrated Performance and Cost Optimization

Outcome of the Project

- New integrated method for combined technico-economic optimization of solar thermal systems including the complete value chain from product development to installation
- Approval of the method with industrial and craft partners
- Identification of a first optimization potential for some individual partners and in the solar thermal sector

Thank You for Your Attention!

Fraunhofer-Institut für Solare Energiesysteme ISE RWTH Aachen, Werkzeugmaschinenlabor

Axel Oliva, Dr. Wolfgang Kramer

www.ise.fraunhofer.de Axel.oliva@ise.fraunhofer.de **Christian Tönnes**

www.wzl.rwth-aachen.de c.toennes@wzl.rwth-aachen.de

COST REDUCTION BY TEMPERATURE LIMITATION

Bert Schiebler

Institute for Solar Energy Research Hamelin (ISFH) schiebler@isfh.de

Price reduction of solar thermal systems

Approaches for temperature limitation

[2] Solar Technologie International GmbH

Thermochromic Absorber Coatings

[3] Institute for Solar Energy Research Hamelin ISFH

Thermomechanical Valves

[4] University of Innsbruck

Collectors with inherently temperature limitation

- Focus on inherently safe systems
- "Automatically" power shut off / increase of heat losses
- Reduction of stagnation temperature

Gains:

- Avoiding vaporization of solar fluid
- Decrease of thermomechanical stress
- Simplification of solar system
- Extended lifetime of the components

Collectors with temperature limitation in IEA TASK 54

Heat Pipes

- Physical effects inside the heat pipe limit the heat transfer at high temperatures
- Applicable in FPC & ETC

[1] Institute for Solar Energy Research Hamelin ISFH

Thermochromic Absorber Coatings

- Emissivity switches from 5 to 40 % at high temperatures
- Applicable in FPC (& ETC)

[3] Institute for Solar Energy Research Hamelin ISFH

ETC ... evacuated tube collectors / FPC ... flat plate collector

- Absorber blade is shifted to the front glazing
- Applicable in FPC

INSTITUT FÜR SOLARTECHNIK

[5] HSR University of Applied Science Rapperswil

Cost optimized system design

Possible simplifications:

А

Cost optimized installation

Cost reductions compared to the reference system:

Solar systems without stagnation load (no vapour, temperature limitation)	General system	Heat pipe system
Less solar fluid is needed	0€	25€
Smaller expansion vessel / no ballast vessel	100 – 140 €	100 – 140 €
Pre-insulated pipes (PEX, PE) Amount of alternative piping	60 – 200 € 50 – 100 %	96 – 200 € 75 – 100 %
Optimized solar station	20 – 100 €	20 – 100 €
Easier installation (pipe laying and bleeding)	100 – 190 €	100 – 250 €
Total reduction of investment costs	280 – 630 €	341 – 715 €
Relative benefit of investment costs	7 – 16 %	9 – 19 %

- General: independent of technology for temperature limitation
- Heat pipe: using heat pipe collectors for temperature limitation

Optimized solar circuit without stagnation load

Optimized Solar Station

Vessel Omit Ballast Vessel

Cost optimized installation

Cost reductions compared to the reference system:

Solar systems without stagnation load (no vapour, temperature limitation)	General system	Heat pipe system
Less solar fluid is needed	0€	25€
Smaller expansion vessel / no ballast vessel	100 – 140 €	100 – 140 €
Pre-insulated pipes (PEX, PE) Amount of alternative piping	60 – 200 € 50 – 100 %	96 – 200 € 75 – 100 %
Optimized solar station	20 – 100 €	20 – 100 €
Easier installation (pipe laying and bleeding)	100 – 190 €	100 – 250 €
Total reduction of investment costs	280 - 630 €	341 – 715 €
Relative benefit of investment costs	7 – 16 %	9 – 19 %

Note: It's difficult to determine costs with high accuracy!

Optimized solar circuit without stagnation load

Reduction of maintenance costs

Thermal and mechanical stress is significantly reduced

- Longer life time of components
- Extension of general maintenance intervals
- Estimation of the maintenance effort for each component (in conformity to VDI 2067)
- Focus on solar fluid

IEA TASK 54 reference solar domestic hot water (SDHW) system 5 m² FPC (gross), 300 l store Germany

Life time (statement by producer)	Life time Reference Generatement by system system			
Solar fluid	5 – 7a	≥ 10a	≥ 10a + easier to change + less fluid needed	

Reduction of maintenance costs

Thermal and mechanical stress is significantly reduced

Reduction of the average maintenance share from 32 % to 18 – 16 %

LCoH for SDHW-System

	Reference system	General system	Heat pipe system
Solar investment [€]	3 850	3 220 – 3 570	3 135 – 3 509
Annual maintenance [€/a]	100	42 – 52	34 – 46
Annual yield [kWh/a]	2 226	2 226	2 226
LCoH solar [ct/kWh]	13.9	9.9 – 11.1	9.3 – 10.7
Cost reduction [%]	-	21 – 30	24 – 34

LCoH for SDHW-System

Most important effect in reduction of maintenance costs

Coming soon ...

- IEA TASK 54 Info Sheets
 - B.3: Maintenance costs of solar systems without stagnation load
 - B.5: Installation costs of solar systems without stagnation load

Maintenance Costs by Avoiding Stagnation Load

INFO Sheet D xx

Description:	Maintenance costs of solar systems without stagnation load
Date:	tba
Authors:	Bert Schiebler, Federico Giovannetti, Stephan Fischer
Download possible at:	http://task54.iea-shc.org/

Introduction

In order to avoid stagnation loads in solar circuits, different approaches are usually distributed. Most of them are based on additional cooling systems or draining (drainback), which require more complex hydraulic installations and control technology respectively. It's also possible to prevent overheating directly in the collector by heat pipes (see figure 1 left), thermochromics' absorber coatings or thermal actuated

INFO Sheet D

Installation Costs of Heat Pipe Collectors

Description:	Optimized installation costs of heat pipe collectors with inherent temperature limitation
Date:	tba
Authors:	Bert Schiebler, Federico Giovannetti, Stephan Fischer
Download possible at:	http://task54.iea-shc.org/

Introduction

Heat pipes in solar thermal collectors are state-of-the-art devices for the heat transfer from the absorber plate to the solar circuit. Beside the simplified collector hydraulic the use of heat pipes provides the advantage of decoupling the absorber plate from the fluid circuit. If the two-phase flow inside the heat pipe is suppressed beginning from a certain temperature, the heat transfer ability from the absorber plate to the manifeld comes to a standardil. But this abwield effect which is called the due out limit of heat place the super state.

Thank you for your attention!

Institute for Solar Energy Research Hamelin (ISFH)

Bert Schiebler, <u>schiebler@isfh.de</u> Federico Giovannetti, <u>giovannetti@isfh.de</u> www.isfh.de

Cost Reduction Potential of Polymeric Collectors

Dr. Michaela Meir

Aventa AS mm@aventa.no

Price reduction of solar thermal systems

Main differences to solar heating systems with conventional flat plate collectors

Main differences to solar heating systems with conventional flat plate collectors

Collector

- High-temperature performance polymers
- Flexible lengths
- Light-weight building modules (8 kg/m²)
- Replacing conventional building envelopes (roofs & facades)

Main differences to solar heating systems with conventional flat plate collectors

Collector

- High-temperature performance polymers
- Flexible lengths
- Light-weight building modules (8 kg/m²)
- Replacing conventional building envelopes (roofs & facades)

System

- Water as heat carrier
- High-flow system
- Drain-back technology
- Non-pressurized collector loop (installation)

Major Production Steps

Structured sheet extrusion

Cutting

End-cap assembly and coating

Cutting of other sub-components ransport & installation

Absorber production

- Highly-industrialised processing
- Very few production steps
- Low production costs with high volume
- Integrated design

Weight of components, Solar combisystem

Average value of material (kg) "Combisystems 2008" with Conventional flat-plate collector

Material weight comparison (in kg) Combisystem, Housing Estate Oslo: **Polymeric AventaSolar collector**

Solar Thermal Value Chain

59 aventa *s*olar

Prices of solar heating systems in private homes

Total end-user costs incl. solar collector system and heat store, reported by the customers, include installation, but exclude VAT and subsidies.

Cost examples: Medium-sized projects (1)

Ilseng State Prison

Costs:

Solar collector, heat store, pumps, control system, pipes, removal of tiles, installation, engineering and administration.

SUM: 433 €m² collector area

Cost examples: Medium-sized projects (2)

Bjørkelangen Elementary School

Solar heating system for domestic hot water preparation. 105 m² facade integrated solar collectors 5.6 m³ heat buffer store **Costs**

Solar collector, heat store, pipes and controller, incl. installation: **SUM: 370 ∉m² collector area** Savings due to replacement of other materials/components are not included.

Cost examples: Solar combisystem (3)

Housing Estate Oslo with 34 passive houses

34 houses with totally 480 m² roof integrated solar collectors, decentralized with 0.8 m³ heat stores, incl.100 liters DHW preheater and piping, operation control of the auxiliary heat supply and solar heating system, installation- and start-up support.

Costs

SUM: 370 €m² collector area

Examples, Norway

Lifetime 20 years

Ilseng State Prison

Retrofit, DHW preparation 237 m² Collector area 8.4 m³ Heat store 1100 kWh/(m² a) solar irradiance*

Bjørkelangen Elementary School

New-built, DHW preparation 105 m² Collector area 5.6 m³ Heat store 889 kWh/(m² a) solar irradiance* Housing Estate Oslo, 34 passive houses

New-built, Solar combisystems with each 14 m² Collector area 0.8 m³ Heat store 1210 kWh/(m² a) solar irradiance*

* Solar irradiance on tilted collector surface.

Examples, Norway LCoHs (saved) Lifetime 20 years **Bjørkelangen Elementary Ilseng State Prison** Housing Estate Oslo, 34 passive houses School **Retrofit, DHW preparation** New-built, Solar combisystems with 237 m² Collector area New-built, DHW preparation each 8.4 m³ Heat store 105 m² Collector area 14 m² Collector area 1100 kWh/(m² a) solar irradiance* 5.6 m³ Heat store 0.8 m³ Heat store 889 kWh/(m² a) solar irradiance* 1210 kWh/(m² a) solar irradiance* = 0.099 €/kWh LCoHs retrofit I CoHs = 0.035 €/kWh $I CoHs = 0.082 \notin kWh$ LCoHs new built = 0.073 €/kWh Electricity costs = 0.115 €/kWh Comments: Comments: Comments: Retrofit: roof tiles had to be Good planning, infrastructure • Passive houses: designed for high removed solar fraction Building is oriented towards east Installation partly included ٠ High solar fraction 65 aventa jolar ; TA<u>S</u>K 54 * Solar irradiance on tilted collector surface.

NTERNATIONAL ENERGY AGENCY

Thank you for your attention!

Aventa AS

Michaela Meir

www.aventasolar.com mm@aventa.no

Cost Competitiveness of Multi-family-house Systems

Dr. François Veynandt

AEE - Institute for Sustainable Technologies f.veynandt@aee.at

Price reduction of solar thermal systems

Overview

- Levelized Costs of solar Heat (LCoH) in multi family houses
- How to ensure low solar heat costs?
- Further cost reduction potential of solar heat in multi family houses
- Key messages

Example of simplified Hydraulic circuit for the reference systems

•
$$LCOH = \frac{I_0 + \sum_{t=0}^T C_t}{\sum_{t=1}^T E_t}$$

AEE INTEC

- Comparison of Levelized Costs of Heat for reference cases:
 - multi family house (MFH) vs. single family house (SFH)
 - solar heat vs. conventional heat (natural gas)
 - in different countries

	Austria			France			G	iermany	/	Switzerland	Denmark	
	MFH	SFH	variation	MFH	SFH	variation	MFH	SFH	variation	MFH	SFH	
System characteristics												
Surface solar collectors (S)	50	6	5	50	4.5		33	5	,	15.5	2.36	m²
Volume storage tanks (V)	4000	300)	3000	300		1500	300)	1500	255	L
Specific solar yield (Et/S)	575	432	33%	880	635	39%	339	445	-24%	563	744	kWh/m²
Specific initial investment (Io/S)	535	838	-36%	900	1044	-14%	642	770	-17%	1250	1589	€/m²
Specific yearly maintenance cost (Ct/Io)	2.4%	2.4%		1.6%	1.4%		2.1%	3.0%)	0.6%	0.9%	%
Life time (T)	25	25		20	20		20	20)	30	30	а
Estimated LCoHs of solar heat	6.0	12.5	-52%	6.7	10.5	-36%	10.5	13.9	-24%	8.8	9.1	€ct/kWh
Estimated LCoH of conventional heat	7.3	10.5	-30%	5.9	7.3	-20%	9.3	11.9	-22%	8.8	17.1	€ct/kWh
Natural gas cost	6.6	6.6		3.0	4.6		5.1	6.6	5	7.9	13.4	€ct/kWh

- Observations:
 - Significant variation in costs between the countries (solar resource, technical practices, legal framework)
 - Note: band width of systems costs (as illustrated in Solar Heat World Wide)

	Austria			France			Germany			Switzerland	Denmark	
	MFH	SFH	variation	MFH	SFH	variation	MFH	SFH	variation	MFH	SFH	
System characteristics												
Surface solar collectors (S)	50	6		50	4.5		33	5		15.5	2.36	m²
Volume storage tanks (V)	4000	300		3000	300		1500	300		1500	255	L
Specific solar yield (Et/S)	575	432	33%	880	635	39%	339	445	-24%	563	744	kWh/m²
Specific initial investment (Io/S)	535	838	-36%	900	1044	-14%	642	770	-17%	1250	1589	€/m²
Specific yearly maintenance cost (Ct/Io)	2.4%	2.4%		1.6%	1.4%		2.1%	3.0%		0.6%	0.9%	%
Life time (T)	25	25		20	20		20	20		30	30	а
Estimated LCoHs of solar heat	6.0	12.5	-52%	6.7	10.5	-36%	10.5	13.9	-24%	8.8	9.1	€ct/kWh
Estimated LCoH of conventional heat	7.3	10.5	-30%	5.9	7.3	-20%	9.3	11.9	-22%	8.8	17.1	€ct/kWh
Natural gas cost	6.6	6.6		3.0	4.6		5.1	6.6		7.9	13.4	€ct/kWh

71

- Key factors and outcomes:
 - Higher solar yield per collector surface in most reference cases
 - Economy of scale in investment costs and maintenance costs
 - Significantly lower in MFH than in SFH
 - Solar LCoH similar or lower than conventional LCoH
 - LCoH more stable over the life time for solar installation than for fossil fuels

	Austria			France			Germany			Switzerland	Denmark	
	MFH	SFH	variation	MFH	SFH	variation	MFH	SFH	variation	MFH	SFH	
System characteristics												
Surface solar collectors (S)	50	6	5	50	4.5	i	33	5		15.5	2.36	m²
Volume storage tanks (V)	4000	300)	3000	300)	1500	300		1500	255	L
Specific solar yield (Et/S)	575	432	2 33%	880	635	39%	339	445	-24%	563	3 744	kWh/m²
Specific initial investment (Io/S)	535	838	3 -36%	900	1044	-14%	642	770	-17%	1250	1589	€/m²
Specific yearly maintenance cost (Ct/lo)	2.4%	2.4%	/ D	1.6%	1.4%	, D	2.1%	3.0%		0.6%	ő 0.9%	%
Life time (T)	25	25	5	20	20)	20	20		30) 30	а
Estimated LCoHs of solar heat	6.0	12.5	5 -52%	6.7	10.5	-36%	10.5	13.9	-24%	8.8	9.1	€ct/kWh
Estimated LCoH of conventional heat	7.3	10.5	5 -30%	5.9	7.3	-20%	9.3	11.9	-22%	8.8	3 17.1	€ct/kWh
Natural gas cost	6.6	6.6	5	3.0	4.6	j	5.1	6.6		7.9	13.4	€ct/kWh

How to ensure low solar heat costs?

- Sharing Experience from existing systems
- Imposing good practices in all steps of the projects
 - Design
 - proven hydraulic concepts
 (domestic hot water storage / buffer storage + fresh water station...)
 - good sizing of components
 - standardized hydraulic components and concepts
 - Implementation in the building
 - easy access and installation on roof, fast hydraulic connections...
 - Dynamic commissioning
 - Monitoring of Operation and Maintenance

See for example the work of the **SOCOL initiative** (France): gathering 2500 members, professionals and contractors, to set up the conditions for efficient and sustainable **solar thermal in multi family houses**. <u>www.solaire-collectif.fr</u>

Further cost reduction potential of solar heat in multi family houses

Emerging approaches

- Combi systems: Combined domestic hot water and space heating
 - Activation of the building thermal mass (using thermal inertia)
 - Centralised solar storage integrated in a 2 pipes distribution network for space heating + decentralised hot water preparation
- Solar and heat pumps
 - Low temperature solar collectors as source for the heat pump
 - PVT collectors
- Business models
 - How is the system financed, who owns the system, who operates it, who garanties the efficiency, who pays and how...

EE INTEC

Key messages about solar thermal in multi-family houses

- Reference systems show attractive costs of solar heat (LCoHs)
 - Significant economy of scale (advantage over SFH)
 - Often lower LCoH than conventional heat costs (natural gas)
 - Definitely more stable and predictible costs than fossil fuels
- How to ensure low solar heat costs?
 - Sharing Experience from existing systems
 - Imposing good practices in all steps of the projects
- Emerging approaches for possibly further cost reduction
 - Combi systems activating thermal mass
 - Solar thermal and heat pumps
 - Business models

AEE INTEC

Thank you for your attention!

AEE - Institute for Sustainable Technologies

François VEYNANDT

<u>www.aee-intec.at</u> <u>@AEE INTEC on Twitter</u> <u>f.veynandt@aee.at</u>

Reduction of Costs

What Could Be Achieved?

Dr. Michael Köhl

Fraunhofer ISE Michael.koehl@ise.fraunhofer.de

Price reduction of solar thermal systems

Present system price

Installation costs

Number of systems in Germany with relative installation costs in the bins

Solar Thermal Value Chain

			}			\$
1. Architect, Planner, Energy Consultant	2. Production	3. Distribution	4. Installation	5. Ins System	talled and Sales 6. Operatio and Maintenanc	7. Cost of kWh solar (LCoHs)
10	38	12	16	24	percentage of total invest cos	_t 0.139€/kWh
50	30	50	20	50	Maximum relative reduction of cost [%]	
Temperature limitation Standardised components Multifamily houses Innovative polymer concept			< 10% better energy - 30% - 50%		gy yield by inc - 50% - 20% 0.06 0.03	reased lifetime 0.093 €/kWh 0.098 €/kWh - 0.09 €/kWh 5 - 0.1 €/kWh
80 🗾 Fi	raunhofer	itw 🗴				Λ <mark>\$</mark> Κ 54

Feel free to inform yourselves & contact us:

Homepage:http://task54.iea-shc.org/Twitter:@IEA_SHC_Task54Email:sandrin.saile@ise.fraunhofer.de

Join us in Sophia Antipolis!

Event:Public Workshop at ADEMEDate:26 April 2018More info:http://task54.iea-shc.org//event?EventID=4954Email:ph.papillon@neuf.fr

